Advance Product Information

Dual EL Lamp Driver

The IMP522 is a dual-output, high-voltage electroluminescent (EL) lamp driver. Either or both EL lamp driver outputs can be turned ON with the LMPSEL select pin. One EL lamp is connected between V_{A} and $V_{A B}$ and the other is connected between V_{B} and $V_{A B}$. $V_{A B}$ is a common pin for both lamps. With an input supply voltage between 2.0 V and 6.5 V , the typical regulated lamp drive voltage is 220 V peak-to-peak.

The device uses a single inductor and a minimum number of passive components: a storage capacitor, a fast recovery diode and two resistors to set the PWM and EL drive frequencies. These can be independently set to optimize brightness and minimize power consumption. R_{SW} is connected between the $\mathrm{R}_{\mathrm{Sw}-\mathrm{osc}}$ pin and the supply pin V_{DD} to set the frequency for the internal 3.0Ω switching MOSFET. The switch duty cycle is 88%. The EL lamp driver frequency is set by R_{EL} connected between the $\mathrm{R}_{\mathrm{EL}-\text { osc }}$ pin and the V_{DD} pin.
Designed to minimize battery current drain, the IMP522 typically draws $550 \mu \mathrm{~A}$. A power-saving shutdown mode reduces current to typically 20 nA .
The IMP522 is available in a compact 10-pin MicroSO package and in die form.

Block Diagram

Key Features

- Drive two EL lamps independently
- Digital LMPSEL pin
- Activate either or both EL output drivers
- $220 V_{\text {p-p typical }}$ AC output voltage drives 30 nF EL lamps
- Wide operating voltage range: 2 V to 6.5 V
- Low current consumption: 550رA
- Disable mode extends battery life

- Disable current typically 20nA

- Compact 10-pin MicroSO package
- High-voltage, low-cost CMOS process

Applications

- Cellular phones
- PDAs/Handheld computers
- Toys/Consumer electronics
- Safety Illumination
- LCD modules
- Remote controls

Pin Configuration

Ordering Information

Part Number	Input Voltage	Temperature Range	Pins-Package
IMP522EMB	2.0 V to 6.5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -MicroSO

Add/T to ordering part number for Tape and Reel.

Absolute Maximum Ratings

$\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\text {SW-OSC }}$ and $\mathrm{R}_{\text {EL-OSC }}$. -0.5 V to +7.0 V
$\mathrm{C}_{\mathrm{S}}, \mathrm{L}_{\mathrm{x}}$. -0.5 V to +120 V
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (MicroSO) 500mW

Note: All voltages are referenced to GND.
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{SW}}=910 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{EL}}=2.7 \mathrm{M} \Omega, \mathrm{L}=220 \mu \mathrm{H}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
ON-resistance of MOS Switch	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}=100 \mathrm{~mA}$		3.0	8	Ω
Output Voltage Regulation	$V_{\text {CSREG }}$		110		120	V
Output Voltage Peak-to-Peak (in regulation)	$V_{A}-V_{A B}, V_{B}-V_{A B}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 6.5 V		220		V
Quiescent $\mathrm{V}_{\text {DD }}$ Supply Current, Disabled	$\mathrm{I}_{\mathrm{DDQ}}$	$\mathrm{R}_{\text {SW-osc }}<100 \mathrm{mV}$		20		nA
Input Current at $\mathrm{V}_{\text {DD }}$ Pin	I_{DD}	See Figure 1		550	900	$\mu \mathrm{A}$
Output Drive Frequency (either output)	f_{EL}	See Figure 1		250		Hz
Switching Frequency	fsw	See Figure 1		61		kHz
Switching Duty Cycle	$\mathrm{D}_{\text {SW }}$	See Figure 1		88		\%
Input Current: IDD Plus Inductor Current (1 Load) IDD Plus Inductor Current (2 Load)	$\begin{aligned} & \mathrm{l}_{\mathrm{N} 1} \\ & \mathrm{l}_{\mathrm{N} 2} \end{aligned}$	See Figure 1 See Figure 1		$\begin{gathered} 21 \\ \text { TBD } \end{gathered}$	$\begin{gathered} 31 \\ \text { TBD } \end{gathered}$	mA

Pin Descriptions

Pin Number	Name	Function
1	$\mathrm{~V}_{\mathrm{DD}}$	Positive voltage supply. Inductor L may be connected here or to a separate unregulated supply.
2	$\mathrm{R}_{\mathrm{SW} \text {-osc }}$	Switch-mode resistor pin. The external resistor R_{SW} determines switching frequency.
3	C_{S}	Boost converter storage capacitor. The voltage across the EL lamp is approximately equal to twice the voltage at C_{S}.
4	$\mathrm{~L}_{x}$	Connection to flyback inductor L.
5	$\mathrm{~V}_{\mathrm{B}}$	Output for EL Lamp B.
6	GND	Ground.
7	LMPSEL	Digital three-state input pin. Select either lamp A or lamp B or both lamps.
8	$\mathrm{~V}_{\mathrm{AB}}$	Common terminal for both EL lamps.
9	$\mathrm{~V}_{\mathrm{A}}$	Output for EL Lamp A.
10	$\mathrm{R}_{\mathrm{EL} \text {-osc }}$	The EL lamp oscillator frequency setting pin. External resistor R_{EL} connected to V_{DD} sets the EL Lamp drive frequency for both lamps.

Application Information

Figure 1. Test Circuit

Application Information

EL Lamp Drive

The outputs $V_{A}-V_{A B}$ and $V_{B}-V_{A B}$ are configured as H-bridges, driven by the EL oscillator. Each output is switched between C_{S} and ground on alternate phases, creating peak-to-peak signals across the EL lamps of twice the regulated voltage.

EL Lamp Selection: LMPSEL

The digital input pin LMPSEL allows either or both EL lamps to be active. Lamp A is active when LMPSEL is LOW and lamp B is active when LMPSEL is HIGH. When LMPSEL is left floating or driven by a three-state driver in the high impedance state, both lamp driver outputs are active.

LMPSEL Signal	Lamp A Drive $\mathbf{V}_{\mathbf{A}}$ and $\mathbf{V}_{\mathbf{A B}}$	Lamp $\mathbf{V}_{\mathbf{B}}$ and $\mathbf{V}_{\mathbf{A B}}$
HIGH	OFF	ON
LOW	ON	OFF
Floating/ High Impedance	ON	ON

The logic HIGH signal level is defined as greater than $0.7 \mathrm{~V}_{\mathrm{DD}}$ and logic LOW is defined as less than $0.3 \mathrm{~V}_{\mathrm{DD}}$. A floating level is recognized with the signal level between $0.3 \mathrm{~V}_{\mathrm{DD}}$ and $0.7 \mathrm{~V}_{\mathrm{DD}}$, or when the output impedance of the driving voltage signal source is infinite (driver in OFF state).

Both drivers are OFF if the IMP522 is disabled.

EL Driver Output Overvoltage Regulator

The IMP522 maximum V_{CS} output voltage is between 110 V and 120 V . The internal overvoltage regulator skips the inductor switching whenever the voltage on the C_{S} pin exceeds the regulation threshold. The internal overvoltage detection trip point has a hysterisis of 1 V and a range of 110 V to 120 V at room temperature.

PWM Circuit Switching

The switching MOSFET is driven by the PWM signal (nominally 61 kHz). During the first 88% of the period, the switch is ON, providing a low impedance path $(<8 \Omega)$ from L_{X} to ground. This causes the external inductor to charge. In the last 12% of the period, the MOSFET is turned OFF. This causes the voltage on the output of L_{x} to rise up to a high value. At some point, this will forward-bias the external diode, thus pumping charge into the storage capacitor C_{S}. The voltage on C_{S} increases each cycle to between 110 V and 120 V . When the internal regulation trip-point is reached, the overvoltage regulator turns the MOSFET switch OFF to conserve power.

Application Information

Power Sequencing

To power up the chip, the $R_{S W-O S C}$ pin is connected to $V_{D D}$ through the external $R_{S W}$ resistor. The voltage on the pin will charge up to $\mathrm{V}_{\mathrm{DD}} / 2$. An internal threshold detector circuit monitors the pin voltage and when it exceeds the threshold range (0.2 V to 0.9 V) it powers up the oscillator and internal bias modules. This starts a delay counter which is one half of the EL oscillator period, after which power to the high voltage internal modules is applied. The IMP522 is then operating fully.

To power down the chip, $\mathrm{R}_{\text {SW }}$ is driven to ground via a switch or logic gate. When the voltage on the driver side of the resistor falls below $\mathrm{V}_{\mathrm{DD}} / 2$, there will be no input bias current into the $\mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}$ pin. This immediately powers down the internal high-voltage circuits, which effectively shuts the lamp off. At this point the oscillator and bias modules still draw quiescent current, but oscillations have ceased. As the R $\mathrm{R}_{\text {SW-Osc }}$ pin voltage falls below 0.1 , the oscillator and bias modules are also fully powered down.

Figure 1. Driver Waveforms

Power Saving Disable Mode

The IMP522 can be powered up and down with $R_{\text {Sw-OSC. }}$. In normal operation, this resistor on the $\mathrm{R}_{\text {SW-OSC }}$ pin is connected to V_{DD} or another voltage source. To power down (disable) the IMP522, $R_{S W}$ is connected to ground.

When disabled, the IMP522 quiescent current drops to typically 20nA.
In die form, an extra pin $\overline{\mathrm{ENABLE}}$ is available (contact factory). Connecting this pad to $V_{D D}$ disables the chip. The $\overline{\text { ENABLE }}$ signal can be driven by a microcontroller.

Oscillator Frequency Adjustment

The EL lamp drive and PWM boost converter oscillation frequencies can be programmed independently.

The R_{SW} resistor, connected between the $\mathrm{R}_{\mathrm{SW}-\mathrm{OSC}}$ pin and V_{DD}, determines the Inductor Switching (or PWM-) frequency. For the recommended nominal resistor value of $910 \mathrm{k} \Omega$, the frequency is 61 kHz . For other resistor values, the frequency is inversely proportional to the resistor value. Increasing the resistance will lower the frequency.

The $R_{\text {EL }}$ resistor, connected between the $\mathrm{R}_{\mathrm{EL}-\mathrm{OSC}}$ pin and V_{DD}, determines the EL lamp drive frequency. For the recommended nominal resistor value of $2.7 \mathrm{M} \Omega$, the frequency is 250 Hz . For other resistor values, the frequency is inversely proportional to the resistor value: increasing the resistance will lower the frequency.

Oscillator	Nominal Resistor	Nominal Frequency
EL Lamp Drive	$\mathrm{R}_{\mathrm{EL}}=2.7 \mathrm{M} \Omega$	250Hz
Inductor Switch (PWM)	$\mathrm{R}_{\mathrm{SW}}=910 \mathrm{k} \Omega$	61 kHz

Package Dimensions

ISO 9001 Registered

IMP, Inc.
Corporate Headquarters
2830 N. First Street
San Jose, CA 95134-2071
Tel: 408-432-9100
Tel: 800-438-3722
Fax: 408-434-0335
e-mail: info@impinc.com
http:/ /www.impweb.com
© 1999 IMP, Inc.
Printed in USA
Publication \#: 2007
Revision: B
Issue Date:
Type:

